Tuesday, October 21, 2008

Know More about our SUN. .


A sweeping prominence, a huge cloud of relatively cool dense plasma is seen suspended in the Sun's hot, thin corona. At times, promineces can erupt, escaping the Sun's atmosphere. Emission in this spectral line shows the upper chromosphere at a temperature of about 60,000 degrees K (over 100,000 degrees F). Every feature in the image traces magnetic field structure. The hottest areas appear almost white, while the darker red areas indicate cooler temperatures. (Courtesy of SOHO/EIT consortium)

Detailed closeup of magnetic structures on the Sun's surface, seen in the H-alpha wavelength on August 22, 2003. (Swedish 1-m Solar Telescope (SST) operated by the Royal Swedish Academy of Sciences, Oddbjorn Engvold, Jun Elin Wiik, Luc Rouppe van der Voort) #

Image of an active solar region taken on July 24, 2002 near the eastern limb of the Sun. The image highlights the three-dimensional nature of the photosphere when seen at these large angles. The structures in the dark sunspots in the upper central area of the image show distinct elevation above the dark "floor" of the sunspot. The height of the structures has been estimated by Dr. Bruce Lites of the High Altitude Observatory to be between 200 and 450 km. The smallest resolvable features in the image are about 70 km in size. There are also numerous bright "faculae" visible on the edges of granules that face towards the observer. (Prof. Goran Scharmer/Dr. Mats G. Löfdahl/Institute for Solar Physics of the Royal Swedish Academy of Sciences) #

The total solar eclipse of February 16, 1980 was photographed from Palem, India, by a research team from the High Altitude Observatory of the National Center for Atmospheric Research. The photograph of the solar corona was taken with a camera system developed by Gordon A. Newkirk, Jr. This specialized instrument photographs the corona in red light, 6400 A -- through a radially graded filter that suppresses the bright inner corona in order to show the much fainter streamers of the outer corona in the same photograph. (Rhodes College, Memphis, Tennessee / High Altitude Observatory (HAO), University Corporation for Atmospheric Research (UCAR)) #

The planet Venus is seen by NASA's TRACE satellite, at the start of its transit across the sun on June 8, 2004. (NASA/TRACE) #

A view of a sunspot and granules on the Sun's surface, seen in the H-alpha wavelength on August 4, 2003. (Swedish 1-m Solar Telescope (SST) operated by the Royal Swedish Academy of Sciences, Göran Scharmer and Kai Langhans, ISP) #

Solar flares produce seismic waves in the Sun's interior that closely resemble those created by earthquakes on our planet. On May 27, 1998, researchers observed this flare-generated solar quake that contained about 40,000 times the energy released in the great earthquake that devastated San Francisco in 1906, equivalent to an 11.3 magnitude earthquake, scientists calculated. Over the course of an hour, the solar waves traveled for a distance equal to 10 Earth diameters before fading into the fiery background of the Sun's photosphere. Unlike water ripples that travel outward at a constant velocity, the solar waves accelerated from an initial speed of 22,000 miles per hour to a maximum of 250,000 miles per hour before disappearing. (Courtesy of SOHO/EIT consortium. SOHO is a project of international cooperation between ESA and NASA) #

No comments: